

Epilepsy Surgery

Candidates for Epilepsy Surgery

- Persistent seizures despite appropriate pharmacological treatment (usually at least two drugs at limits of tolerability)
- Impairment of quality of life due to ongoing seizures

Problems of intractable epilepsy

Potential for injury

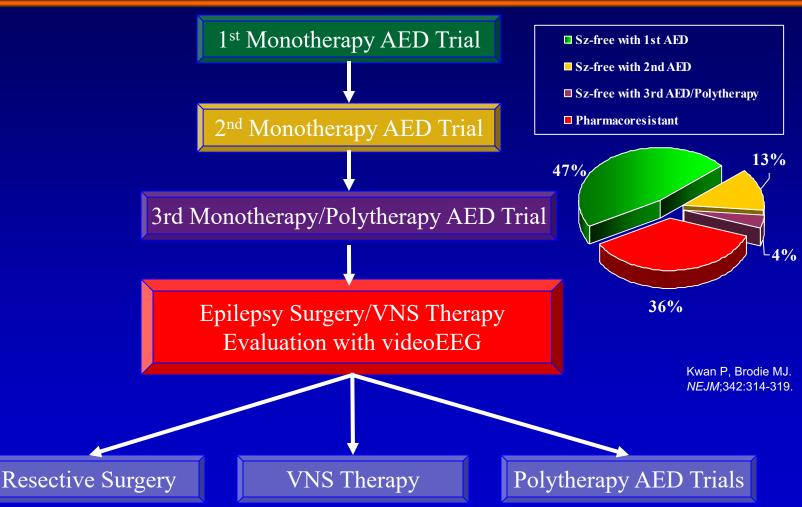
- Socially disabling
 - Employment (and schooling)
 - Driving
 - Living independently
 - Stigmatization

Epilepsy Surgery

• As many as 100,000 patients with epilepsy in the United States are potential surgical candidates

• \sim 5,000 new potential cases occur each year

• 1,500 epilepsy surgeries are performed each year


When should surgery be considered?

• After adequate trials of 2-3 good antiepileptic medications

• The type of epilepsy and initial testing may influence this decision

Treatment Sequence for Pharmacoresistent Epilepsy

- History and exam
- MRI scan
 - Mesial Temporal Sclerosis (MTS), tumor, vascular malformation, dysplasia
- Video/EEG monitoring with scalp EEG
 - interictal epileptiform discharges
 - ictal
 - Seizure semiology
 - Ictal EEG discharge
 - Additional electrodes

Department of Neurology

- Functional Imaging
 - PET
 - hypometabolism interictally
 - SPECT
 - hypoperfusion interictally
 - hyperperfusion ictally
 - subtraction and co-registration with MRI

Department of Neurology

- Neuropsychological testing
 - Pre-operative baseline
 - Aid in localization
 - Predicting risk of cognitive decline with surgery
- Wada (intracarotid amobarbital) test
 - language
 - lateralization
 - Memory
 - prediction of postoperative decline

Inpatient Video EEG Monitoring

• Goal: to capture the patient's typical seizures

Medications are tapered or withdrawn

• Sleep deprivation, hyperventilation, photic stimulation and possibly other provocative maneuvers are tried

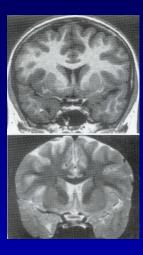
Inpatient Video EEG Monitoring

- Assess the interictal EEG using a longer recording
- Confirm the diagnosis of epilepsy
- Confirm the type of epilepsy
 - Generalized vs. partial
 - Temporal vs. extratemporal
- Localize the site of seizure onset

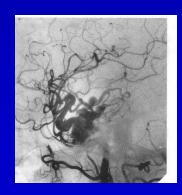
MRI head- seizure protocol

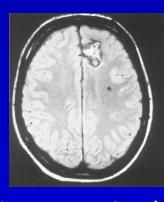
• Coronal T2

• High resolution 3T MRI (coronal and axial)

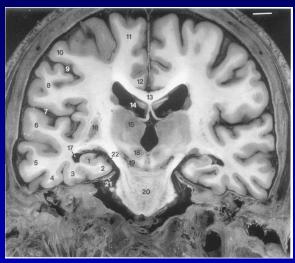

Thin coronal cuts through the temporal lobes

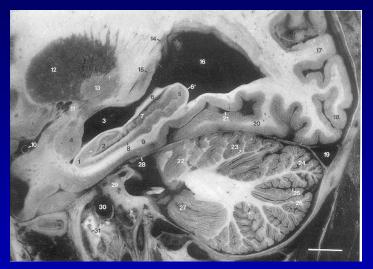
Epilepsy Surgery- Lesional

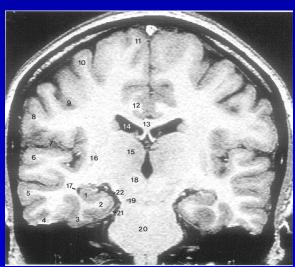

Ganglioglioma

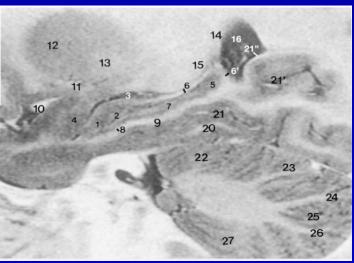

DNT

Cortical Dysplasia

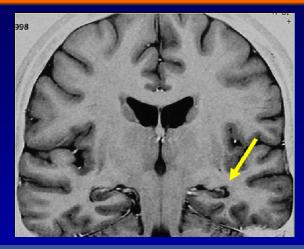

AVM

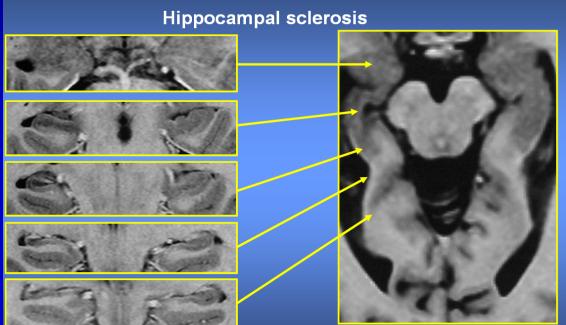



Cavernous Angionla



Temporal Lobe Epilepsy- Hippocampal Anatomy



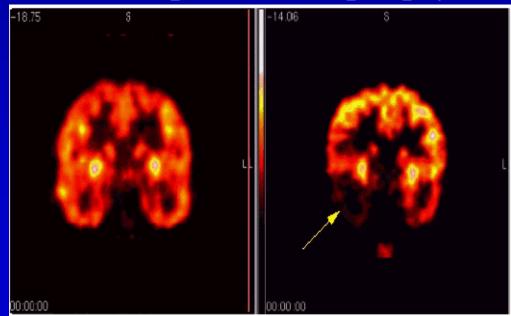


Temporal Lobe Epilepsy- Hippocampal Atrophy

Concordance

- Interictal EEG findings
- Ictal semiology
- Ictal EEG onset
- MRI

- Tests should show concordant findings
- If a contradictory or unclear picture emerges, additional testing is warranted


If not concordant

- MEG
- Metabolic studies
 - PET
 - Ictal SPECT (SISCOM)

PET

- Glucose metabolism
 - FDG (18-F-2-deoxyglucose)
- Cyclotron required- limits availability
- Short half life (FDG- 150 minutes) -limits ictal studies
- Mostly useful for temporal lobe epilepsy

FDG-PET localization as judged by EEG criteria

- Spencer, et al.
 - 312 patients from the literature
 - Temporal lobe epilepsy
 - Sensitivity: 84%
 - Specificity: 86%
 - Extra-temporal epilepsy
 - Sensitivity: 33%
 - Specificity: 95%

Ictal SPECT

- SISCOM (subtraction ictal SPECT with coregistration onto MRI)
 - Ictal injection at the time of the seizure with scan
 - Interictal injection with scan
 - Co-registration onto MRI

Ictal SPECT

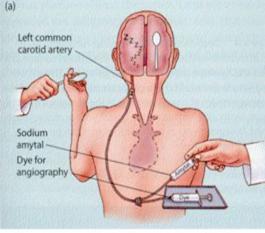
- Good confirmatory test- added utility in
 - Non-lesional (MRI negative) temporal and extra-temporal epilepsies
 - Limiting resection in cases of diffuse hemispheric abnormalities
- Due to regulations regarding administration of radiopharmaceuticals not currently feasible in many states (including Texas)

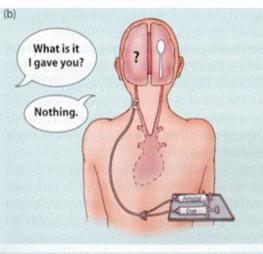
Criteria for "skip" vs Phase 2

- CONCORDANT DATA = 'skip' to resection
 - EEG/ MRI/ Neuropsych
 - 2 concordant tests and no discordant test
 - usually EEG + MRI
- If data NOT Concordant
 - Unilateral seizure activity = subdural grids
 - Bilateral temporal lobe seizure activity = bilateral depths

- Helps determine which side of the brain controls
 language function and how each side of the brain controls memory function
 - Language is usually controlled on the L, Memory can be controlled by both sides of the brain (the test tells physicians which side has the better memory function)
- Need this information to help the patient /family make an informed decision based on possible risk factors for specific neurologic deficits such as memory problems or aphasia

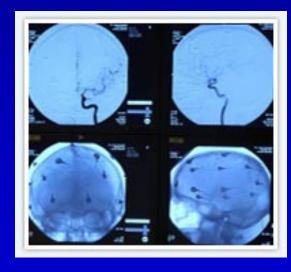
- Two doctors perform the test: usually a **neuroradilogist** /interventional neurologist and an epileptologist (neurologist specializing in epilepsy)
- Patients remain NPO from 12 midnight the night prior to the test
- Hospitalization is required
- Pt usually kept overnight and taught to not participate in strenuous activity for up to 48 hours after the test has been completed




- An angiogram is conducted prior to the WADA test
- A catheter is directed through the groin, into the right or left internal carotid artery in the neck (these are the main arteries that supply blood supply to the brain)
- Once the catheters are in place, dye is injected into these arteries
- Radiographic images are then taken of the blood flow through the brain

after complete angiogram, WADA test is performed...

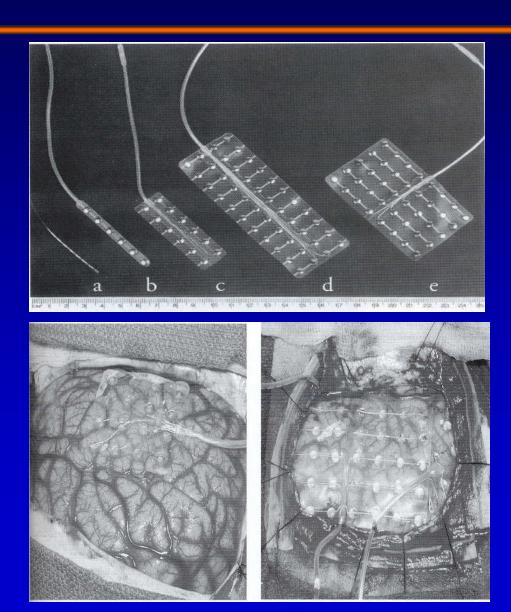
- One side of the brain is anesthetized with a short acting barbiturate called Brevitol ®.
- NON- anesthetized side of the brain remains fully awake.
 - EEG waveform tracings are done at the same time as a neurological exam by the neurologist to confirm this
- Epileptologist will then evaluate the patients' ability to speak
- The epileptologist will also show the patient individual cards of pictures and words. The awake side of the brain will try to recognize and remember what it sees.
- When anesthesia wears off, and both sides of the brain are awake, the epileptologist will ask the patient what was shown.
 - This tests both language and memory
 - Each response is recorded.



- Procedure is repeated for the other side of the brain
 - A new angiogram is done for that side of the brain
 - -Different pictures and objects are shown
- Once both sides are awake again, the patient will be asked what was shown the second time. The items are shown one at a time and the patient is asked to name them.

- The physicians will determine which side of the brain is the dominant side
- Test may last from 60 to 90 minutes (varies)

Angiogram images


Neuropsychological testing

- Intracranial EEG when needed
 - Grids and strips, most commonly subdural
 - Parenchymal "depth" electrodes, especially for recording from hipppocampus
 - Identification of ictal onset
 - Brain mapping
 - cortical stimulation
 - SSEPs
 - Functional MRI

Evaluation for Surgery- Subdural Grid Electrodes

Stephan Eisenschenk, MD Department of Neurology

Depth Electrodes

Types of Surgical Procedures

- Resective Surgery: single seizure focus in non-eloquent region.
- Palliative Surgery:
 - For drop attacks: corpus callosotomy
 - For Rasmussen's encephalitis or hemimegalencephaly: hemispherectomy

S-Slide 32

Surgical Treatment of Epilepsy

Curative

Figure 2
Palliative

Pathologies

MTS TLE

Lesional

- Low Grade Glioma

- Cav. Malformation

Non-MTS TLE

Frontal Lobe epilepsy

SMA/cingulate epilepsy

Malformations of cortical development

Procedures

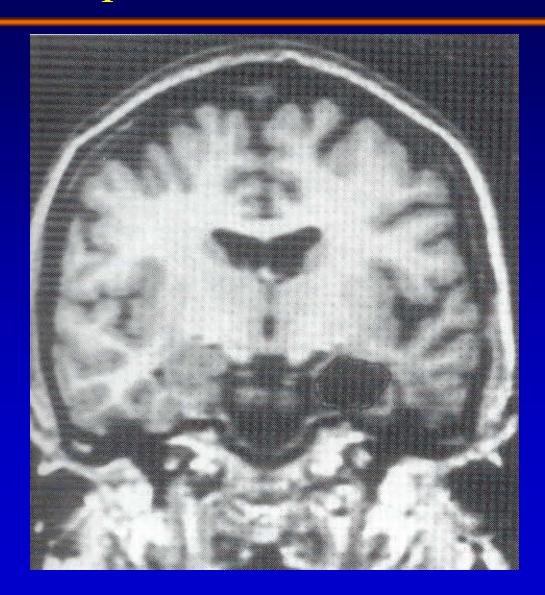
Lesionectomy Lobectomy Hemispherectomy
Topectomy
MST's

Disconnection (Callosotomy)

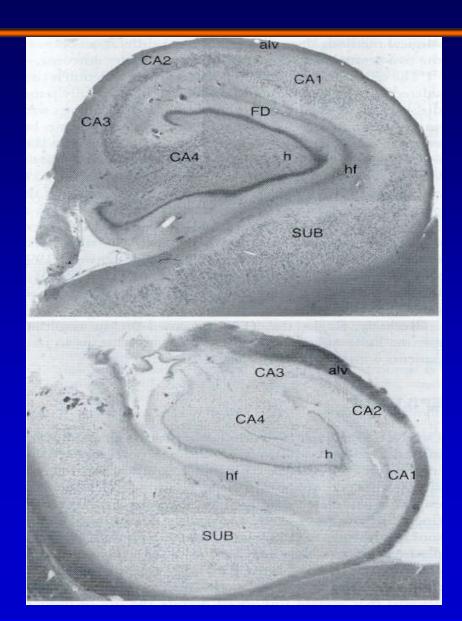
Modified from McKhann G.M. and Howard M.A.: Epilepsy Surgery: Disease Treatment and Investigative Opportunity, in <u>Diseases of the Nervous System: Clinical Neurobiology</u>, 2002.

Consideration of intracranial monitoring

- Options
 - Subdural strips
 - Subdural grids
 - Depth electrodes
- Record additional seizures with the intracranial electrodes in place to better localize seizure onset


Cortical stimulation

- Can be done at the time of surgery or through implanted intracranial electrodes to localize functional cortex including
 - Language cortex
 - Motor cortex
 - Sensory cortex


Stephan Eisenschenk, MD Department of Neurology

Post-op MRI for Mesial ATL

Temporal Lobe Epilepsy- Hippocampal Sclerosis

Lesional Epilepsy Syndromes

- Predictive of
 - An unfavorable response to AED medication
 - A favorable response to surgery
- Operative success
 - Lesional pathology
 - Location of lesion
 - Completeness of resection

Lesional Epilepsy Syndromes

	Lesionectomy (Engel et al)
Seizure-free	195 (66.6%)
Improved	63 (21.5%)
Not improved	35 (11.9%)
Total	293 (100)

Lesional Epilepsy Syndromes-Tumors

 Commonly low grade gliomas, DNETs, gangliogliomas

• With full resection 43-90% seizure free depending on the study

Lesional Epilepsy Syndromes-Vascular Malformations

AVMs, Cavernous hemangiomas

Seizures presenting symptom in 30-70%

- 56-89% seizure free

Lesional Epilepsy Syndromes-Vascular Malformations

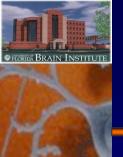
1		Piepgras, et al.	Yeh, et al.	Dodick, et al Mayo
A		Mayo		
17.	# of pts total	280	54	20
	# of pts w/ >3 Sz	68	54	20
	Type of malformation	AVMs	AVMs	AVMs & cavernous malf
	% Sz free post surg- on AED	76%, better in 97%	70.4%, 88.9% >90%	75%, 90% >90%
, MD	% Sz free post surg- no AED	41%		10%

Lesional Epilepsy Syndromes-Neuromigrational abnormalities

	Palmini, et al. (McGill/MNI)		
# of patients	30 (24)		
Pathology	Focal NMD		
% seizure free	8%		
>90%/>50%	42%/67%		
Excision- complete or major & outcome	77% w/ good/excellent outcome		
Excision- minor (<50%) & outcome	0% w/ good/excellent outcome		

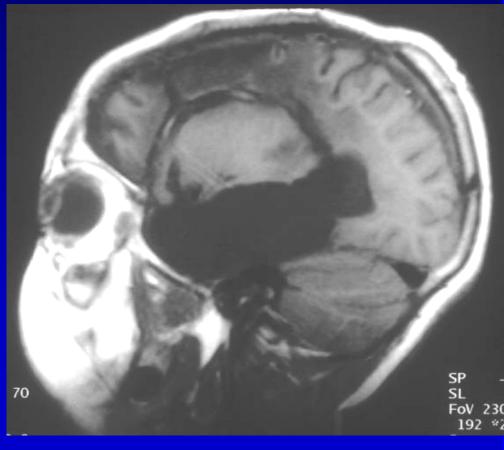
Nonlesional Epilepsy

• As determined by MRI (Hajek et al.)


- 20% seizure free

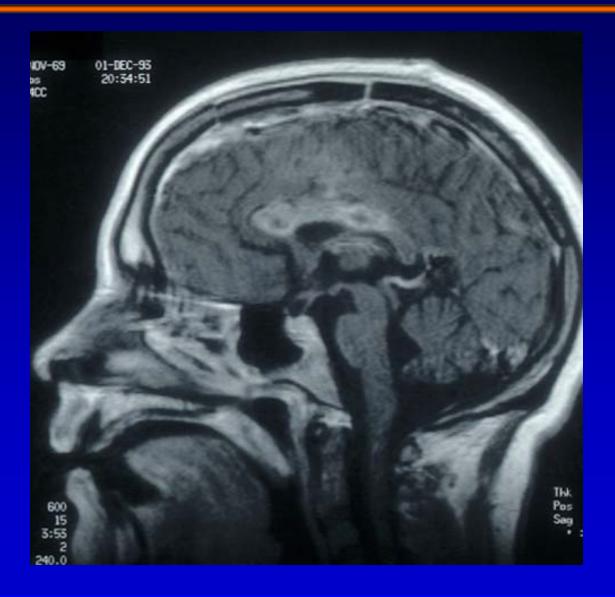
- 55% with improvement




Hemispherectomy

- Current practice is to perform a modified radical hemispherectomy leaving the frontal and occipital poles in place though disconnected
- Reserved for certain catastrophic childhood epilepsies
 - Rasmussen's encephalitis
 - Hemimegalencephaly

Hemispherectomy


Corpus Callosotomy

- Useful as a palliative procedure in patients with symptomatic generalized epilepsy associated with certain seizure types
 - Tonic
 - Atonic
- Almost always done as a staged procedure
 - Anterior 2/3's corpus callosotomy first
 - Completion of corpus callosotomy if initial surgery ineffective or not effective enough

Stephan Eisenschenk, MD Department of Neurology

Corpus Callosotomy

Corpus Callosotomy- Results

	Reutens, et al 29 mo	Oguni, et al (MNI) 39 mo	Wyler
# of patients	64 (15 CCC)	43 (all ACC)	66 (11 CCC)
Seizure free	8 (12%)	5 (12%)	7 (11%)
>50%	31 (48%)	24 (56%)	45 (68%)
Worse	1 (2%)	0%	0% (2 died)
Seizure	Astatic- 71%	Astatic- 65%	
Type	Tonic- 43%	Tonic- 60%	
Outcome	GTC- 50%	GTC- 38%	
	CPS- 50%	CPS- 50%	

Vagus Nerve Stimulation

 Adjunctive treatment for medically refractory epilepsy patients

Not ideal surgical candidates

Patient and family not interested in a surgical option

Vagus Nerve Stimulation-Advantages

- Minimal surgical complications, NO mortality
- No "down stream" effects
- No evidence of increased mortality or SUDEP
- Localized stimulation related effects:
 - Hoarseness/ voice change
 - Throat pain
 - Cough
 - Dyspnea
- During Stimulation
- Diminish over time
- Controllable

Vagus Nerve Stimulation-Disadvantages

Surgical procedure

- Adjunctive treatment for seizures
 - Does not obviate the need for medications though fewer meds at lower doses may be required