- Docente: Fabio Masina
- Docente: Fabio Masina
- Docente: Lorenza Entilli
- Docente: Lorenza Entilli
Negli ultimi anni si sente sempre più spesso parlare dello studio delle oscillazioni tramite elettroencefalografia (EEG), come la modulazione di onde alpha o theta, o l'entrainment in gamma. Le analisi che permettono di studiare come variano le frequenze nel tempo (ad esempio in risposta ad uno stimolo) sono generalmente chiamate analisi "Time Frequency". La popolarità di questa tipologia di analisi è legata alla capacità di integrare le informazioni fornite da analisi più tradizionali, come gli ERPs (potenziali evento-relati), analisi molto efficaci, che tuttavia non considerano parte delle informazioni fornite dal segnale. Lo scopo di questo corso è comprendere e utilizzare le principali analisi di Frequenza (es. PSD) e Tempo-Frequenza (es. Hilbert, Morlet) facendo cenno anche ad altri metodi. Utilizzeremo insieme un software gratuito (Brainstorm) con interfaccia grafica, largamente utilizzato per le analisi EEG. In base al tempo disponibile approfondiremo anche l'utilizzo degli scripts tramite Brainstorm.
In recent years we often hear about the study of oscillations using electroencephalography (EEG) as, for example, the modulation of alpha or theta waves, or gamma entrainment. The analyses that allow us to study how frequencies vary over time (e.g. in response to a stimulus) are generally called "Time-Frequency" analyses. The popularity of this type of analysis is linked to the ability to integrate the information obtained with more traditional analysis, such as the ERPs, a very effective strategy, which however do not consider part of the information of the signal. The purpose of this course is to understand and learn how to apply the main Frequency (e.g., PSD) and Time-Frequency (e.g., Hilbert, Morlet) analyses, while also mentioning other methods. We will use together a free software (Brainstorm) with a graphic interface, widely used for EEG analyses. Based on the time available, we will also deepen the use of scripts through Brainstorm.
- Docente: Rachele Pezzetta
- Docente: Gian Marco Duma
- Docente: Davide Zanardi
The aim of the course is to provide a series of skills to perform advanced analysis of high-density electroencephalographic (hdEEG) data. The course covers all the steps required to perform functional connectivity analysis of resting state hdEEG data. In particular, the different steps include EEG signal preprocessing, head modelling, EEG source localization, and connectivity analysis. Connectivity analysis include two different approaches to extract brain networks: i) data-driven, based on independent component analysis (ICA) and ii) hypothesis-driven, based on the definition of specific regions of interest (seed). All lessons will include both theoretical and practical sessions, these latter to allow familiarizing with NET software. During the lessons, students' direct interaction is highly encouraged.
- Docente: Marco Marino
Implicit techniques measure psychological attributes (e.g., attitudes, stereotypes, self-esteem, etc.) without requiring participants to report a subjective assessment of these attributes. The purpose of the course is to introduce the student to the main implicit techniques for the study of cognition and behavior. For example, the Implicit-Association Test (IAT) is a tool based on response latencies, which implicitly investigate the mental association between concepts. The IAT is widely used in psychology research, especially in social and cognitive psychology, but it also has numerous practical applications, for example, in marketing. The course aims to provide the student with:
i) the basic knowledge for the implementation of research paradigms based on implicit measures;
ii) the basic knowledge for the use of softwares that allow the implementation of implicit techniques;
iii) knowledge of the main fields of application of implicit techniques
- Docente: Valentina Fietta
- Docente: Giulio Contemori
- Docente: Giulio Contemori
- Docente: Sara Bertoni
- Docente: Sina Shafiezadeh
- Docente: Giovanni Bruno
- Docente: Beatrice Moret
- Docente: Beatrice Moret